
Classifying Linux Shell Commands using Naive
Bayes Sequence Model

Prof. Darshika Lothe1,Pradumna Gite2,Amit Mishra3,Anubhav Yadav4,Snehal Kadlag5

1M.Tech in Software Engineering,
RGPV Bhopal,India

2,3,4,5 B.E. in Computer Engineering, Imperial College Of Engineering and Research,
 Pune,Maharshatra,India

Abstract—Using Linux shell commands is a challenging
task for most of the people new to Linux. This paper presents
the idea of conversion of natural language to equivalent Linux
shell command. To achieve the conversion we make use of a
Naive Bayes text classifier. However there could be a case of a
series of flags and combination of commands. This is handled
by a sequence of Naive Bayes text classifier. Owing to the
small amount of data set for every command the performance
of naive Bayes is equivalent to that of the other discriminative
classifiers like maximum entropy models. We improve the
classification accuracy by combining the naive Bayes model
with linear interpolation for predication of combination of
multiple commands and flags.

Keywords—Natural Language Processing; Linux; ; Naïve
Bayes;

I. INTRODUCTION

Using Linux command line is one of the difficult parts
of using Linux for new users. It is difficult to remember
different commands and all the flags associated with the
commands. This paper proposes the use of natural language
to shell syntax conversion. Any English sentence will be
converted to an equivalent Linux shell command. This
involves the prediction of a combination of multiple
commands and flags for a particular English statement. This
conversion is achieved using a naive Bayes text classifier.

Here Naive Bayes performs faster than other
discriminative classifiers like maximum entropy. Also
because of a small training data set for all commands it is a
reasonable choice to make use of a naive Bayes model
instead of discriminative classifier. Example of Linux
command

Create a new tar archive

tar cvf archivename.tar

Although a naive bayes classifier assumes conditional
independence among the words in a sentence it performs
relatively well for a small corpus.We make use of add one
smoothing to avoid zero probabilities for newly occuring
words. It works on the principle of maximum likelihood
estimates.

When one of the commands is predicted by the
classifier the next task is to find the combination of that
command with other commands and also the flags
associated with that command. This is done by evaluating
the probability of several other possible combinations that
can come along with the initially predicted command. For

example if "find" is one command predicted by the
classifier , for the sentence "search all the strings in the
folder 'etc' " , the other possible combination for this
command could be "grep" or "rm" or "cat" etc .To find this
we calculate the probability of "find" given "grep" , "find"
given "rm" and "find" given "cat" and then select the
highest amongst it.

The section 2 of the paper introduces the multinomial naive
bayes model. Then section 3 of the paper contains the use
of the text classifier and linear interpolation of features to
generate sequence of commands and flags . The section 4
concludes the paper with future scope and possible
optimizations.

II. MODEL OF MULTINOMIAL NAIVE BAYES

For a sentence s and class c we have by bayes theorem

Maximum a posterior (MAP) is the most likely class

Where

P(s) can be eliminated. P(s) tells us how likely the

sentence is which will be identical for all classes.

Here we make two assumptions. First assumption is that

the position of the words does not affect the calculated
value. Next we assume conditional independence amongst
the words in a sentence.That means the word probabilites
P(x|c) are independent given the class c.

Darshika Lothe et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4149-4151

www.ijcsit.com 4149

Here we perform Laplace smoothing to counter the
problem of zero probabilities for newly occurring words.

The numerator in the equation is the number of times

word wi came in the data set for class c. The first term in
the denominator is the total number of words in the class c
and V represents the total number of words in the
vocabulary.

We create data sets for each command and flag
containing the possible sentences that could be used for
that class. When an input is provided by the user in the
form of English sentence, its broken into individual words.
These words act as an input to the classifier. These words
are directly matched with the data sets of each class to
calculate the probabilities. We then get the first possible
command for the sentence.

III. PREDICTING SEQUENCE OF COMMANDS

A Linux command could be a combination of more than
one command and flags. To predict the other possible
combination with the first command we create a list of all
the possible combinations that can occur with the any given
command. For example with the command "find" we can
have combinations with "grep" , "rm", "cat" and other
possible commands and flags that operate with a file found
by the "find" command.

The list for every command contains its possible
combinations with the command for which the list is made.
Every entity in the list contains feature words related to that
particular given command. For example a list for the
command "find" will contain "grep" as an entity. "grep"
will have feature words like "search", "find" ,"locate" and
bigrams like "search word" ,"containing word" , "containing
string" and also certain trigram combinations for grep.

To find the next possible combination with the initial
command we provide the same English sentence as input to
the classifier. However this time we find the probabilities
only for those commands present in the list of the initially
predicted command. The probability of every item in the
list is multiplied by a confidence value for that entity of the
list. The feature word of an entity in a list could be a feature
word of other entities in the list as well. A confidence value
tells us how likely the feature belongs to an entity as
compared to the other entities.

Confidence value of an entity e is given by

Here f subscript i is a binary feature indicating the
presence or absence of a feature. Lambda i gives us the
weight of that feature. When the feature is a part of other
entities as well we set lambda i equal to the linear
interpolation of feature over trigram, bigram and unigram
level.

The value of lambda i for a trigram feature is calculated
as follows

Here qml is the maximum likelihood estimate of that
feature.

Here

Here we choose m1, m2 ,m3 to maximize

Here c1 is the number of times we found the given
trigram in the validation data taken out from the data set of
that class(entity).Thereby calculate the values of m1, m2 ,m3
for all the trigram features in the class.

We use the same technique for bigram features and use
only the maximum likelihood estimate for the unigram
features of a class (entity).This helps us to compensate for
the assumption of conditional independence in naive Bayes.

Once the second command is predicted we look for the
list of newly predicted command and repeat the procedure.
This time if the confidence value of all the entities in the list
multiplied by the naive Bayes classifier probability is below
a threshold, we stop looking for further combinations.

Once we have the possible commands and flags for a
sentence we generate permutations of those commands and
flags. These permutations are matched with predefined
sequences of possible combinations for those commands
and flags. If an incorrect output is generated the user may
enter the right combination which is then added to the
predefined sequences.

IV. PREDICTING OBJECTS OF INTEREST IN THE SENTENCE

Objects are words file name, string name or other words
that serve as the parameters of the command. The words
that follow the words like folder, file , string or disk and
other similar words are the objects of interest in the
sentence. However the sentences that do not contain such
words preceding the object it is difficult to predict such
objects.

Darshika Lothe et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4149-4151

www.ijcsit.com 4150

A solution to this problem is to predict an object on the
basis of the words preceding and following the object in the
sentence. That is to find out the bigrams (preceding word,
object) and (object, following word) in the database of the
corresponding predicted command.This approach can be
further enhanced by keeping information about the relation
between the words.
For Example consider the sentence: Enlist the contents of
the directory /applet.
Here the verb is 'enlist' and the relationship is 'contents of'
Example 2: Print the files in /etc.
Here the verb is 'Print" and the relationship is "files in"
So we keep a database of verbs and their possible
relationships to predict an object.
Thereby we build a form of finite automata between verbs
and relationships.

V. FUTURE SCOPE

The system can be extended to include more than two or
three commands and possibly predict a larger set of flags
and commands. The accuracy of the system can be
increased by using word similarity tables increasing the
classification accuracy.

Plug-ins can be added to the system to update status on
social networking sites like twitter.

The system can be made more extensible to include a
larger database for new commands. This prototype can be
made into functional end user system software.

Voice control can be added to increase the flexibility of
use for the end user.

VI. CONCLUSION

The model of predicting Linux commands from English
sentence is a prototype which can be extended to operate
most of the system through natural language. The model
works effectively for predicting up to two commands.
Larger sequences are also predicted correctly but with
comparatively less accuracy.

ACKNOWLEDGMENT

This research would not have been feasible without
encouragement and guidance of Prof. Darshika Lothe. We
are heavily indebted to her. She patiently discussed ideas
with us and gave in JSAPI grammar format and many more
suggestion.

We are grateful to Prof. Vinod S. Wadne, Head Of
Computer Department, Imperial College Of Engineering
and Research for always being ready to help with most
diverse problem that we have encountered along the way.

We express our sincere thanks to all staff and colleagues
who have helped us directly or indirectly in completing this
paper.

We pay our respects and love to our parents and all
other family members and friends for their love and
encouragement throughout our career.

REFERENCES
[1] http://www.baselinemag.com/c/a/Business-Intelligence/40-Fast-

Facts-on-Linux-727574/

[2] http://www-nlp.stanford.edu/fsnlp/

[3] http://www.cs.colorado.edu/~martin/slp.html

[4] Part-Of-Speech Tagging using Neural network Ankur Parikh 2009

[5] Part-of-Speech tagging based on artificial neural networks Salvador
Tortajada Velert

[6] A Fully Bayesian Approach to Unsupervised Part-of-Speech
Tagging Sharon Goldwater

[7] Part-of-Speech Tagging from 97% to 100%: Is It Time for Some
Linguistics? Christopher D. Manning

[8] Kristina Toutanova and Christopher D. Manning. 2000. Enriching
the Knowledge Sources Used in a Maximum Entropy Part-of-
Speech Tagger. In Proceedings of the Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Very
Large Corpora (EMNLP/VLC-2000), pp. 63-70.

[9] Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram
Singer. 2003. Feature-Rich Part-of-Speech Tagging with a Cyclic
Dependency Network. In Proceedings of HLT-NAACL 2003, pp.
252-259..

Darshika Lothe et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4149-4151

www.ijcsit.com 4151

